0-39

64

PREPARATION OF SOME PERFLUOROALKYLSULPHINES

R. N. Haszeldine, W. D. Morton*, D. G. Rowsell and S. Samejima*

Department of Chemistry, UMIST, Manchester, M60 1QD (U.K.)

Fluorotrifluoromethylsulphine (CF₃.CF=S=0, 1), the first stable perfluoroalkylsulphine has been synthesised recently in our laboratories. An alternative route to (1) and a route to other perfluoroalkylsulphines RFCF=S=0 arise via the dechlorofluorination of perfluoroalkylsulphinyl chlorides (RFCF₂.SOC1, 2), readily available from the corresponding sulphonyl halides.

Thermal dechlorofluorination of the sulphinyl chlorides (2) over copper at approximately 250° gives the corresponding sulphines. In contrast, at temperatures around 200°, the reaction of the sulphinyl chlorides (2) with copper gives the perfluoroalkylthiosulphonates ($R_FS.SO_2R_F$), which are also prepared from the sulphinyl chlorides (2) and mercury at room temperature.

see footnote on p.63

0-40

PREPARATION AND REACTIONS OF 1,2-OXATHIETAN 2,2-DIOXIDES: A CONVENIENT ROUTE TO INTERNAL POLYHALOGENOALKENES

I. W. Cookson*, R. N. Haszeldine, J. S. Kilburn, W. D. Morton and S. Samejina[†]

Department of Chemistry, UMIST, Manchester M60 1QD (U.K.)

1,2-Oxathietan 2,2-dioxides (β -sultones) are conveniently prepared either by the addition of sulphur trioxide to polyfluoroalkenes or by the addition of polyhalogenoketones to a sulphene. Thus the sulphonyl fluoride (CF₃.CHF.SO₂F, 1) reacts with the complex of Me₃N-SiF₄, probably to give the sulphene CF₃.CF:SO₂ which, in the presence of hexafluoroactone, gives the sultone

Extension of this procedure has yielded a series of β -sultones. Pyrolysis of the sultones eliminates SO₃ and provides an efficient route to internal perfluoroalkenes, whereas photolysis of a sultone yields an oxirane via loss of SO₂.

The reaction of some of the internal olefins with chloride ion will also be described.

see footnote on p. 63